Liposarcomas of the hypopharynx: a systematic review of the literature

Andrea Corvino¹, Giuseppe Riva¹, Matteo Sensini¹,
Massimiliano Garzaro¹, Giancarlo Pecorari¹

Affiliations:
¹ ENT Division, Surgical Sciences Department, University of Turin, Via Genova,3,10126 Turin, Italy

Corresponding author:
Dr. Giuseppe Riva- 1st ENT Division, Surgical Sciences Department, University of Turin, Via Genova,3,10126 Turin, Italy- phone number: +39.011.633.66.88
fax +39.011.633.66.50. mail:giuseppe.riva84@gmail.com

Abstract

Introduction: Liposarcomas are considered the most common type of soft tissue sarcoma in adults. They represent approximately 20% of all mesenchymal malignancies and most frequently involve the retroperitoneum, trunk and extremities. Hypopharyngeal localisation of a liposarcoma is extremely rare. To determine the prevalence of liposarcomas of the hypopharynx, we conducted a systematic review of the literature.

Methods: We performed a systematic search of the literature until 2015 using PubMed and Ovid. The search identified 28 cases of hypopharyngeal liposarcomas. The inclusion criteria were: clinical trials, cohort studies, case-control studies, case reports and case series on hypopharyngeal liposarcomas. From an initial 77 articles, 23 articles were selected for this systematic review. The natural history, imaging features, histology, treatment and prognosis were analysed.

Results: The incidence peaked in the sixth and seventh decades. Diagnostic procedures were based on the barium swallow test, endoscopic examinations, and computed tomography (CT)/magnetic resonance (MR) imaging. A well-differentiated liposarcoma represented the most frequent histological subtype. Surgical excision was the main treatment. Endoscopic resection appeared to be useful for pedunculated tumours of the hypopharynx. The 1-year disease-free survival rate was 89.47%.

Conclusions: A hypopharyngeal liposarcoma is a rare pathology, but it should be kept in mind when a mass of the hypopharynx is discovered. A cervical approach is better, irrespective of the size of the tumour, except for cases in which an endoscopic approach is feasible. Local recurrence is common. Therefore, patients should undergo regular examinations, at least for up to 5 years.

KEY WORDS: liposarcoma; hypopharyngeal neoplasms; hypopharynx; piriform sinus, lateral pharyngotomy; systematic review
Riassunto

Introduzione: I liposarcomi sono considerati il più comune tipo di sarcoma dei tessuti molli negli adulti. Rappresentano circa il 20% di tutte le neoplasie mesenchimali e interessano più frequentemente il retroperitoneo, il tronco e le estremità. La localizzazione ipofaringea è estremamente rara. Lo scopo di questa revisione sistematica è di determinare la prevalenza dei liposarcomi dell’ipofaringe.

Risultati: L’incidenza del liposarcoma raggiunge un picco tra la sesta e la settima decade di vita. Le procedure diagnostiche si basano sul transito con pasto opaco, sulle valutazioni endoscopiche e sull’imaging con tomografia computerizzata o risonanza magnetica. Il sottotipo istologico più frequente è rappresentato dal liposarcoma ben differenziato. L’escissione chirurgica è il trattamento principale. La resezione endoscopica è utile nei casi di liposarcoma peduncolato. La sopravvivenza libera da malattia a 1 anno è 89.47%.

Conclusioni: Il liposarcoma dell’ipofaringe è una patologia rara, ma deve essere tenuta in considerazione nella diagnosi differenziale delle masse ipofaringee. L’approccio cervicale è il migliore, indipendentemente dalle dimensioni del tumore, ad eccezione dei casi in cui è fattibile l’approccio endoscopico. Le recidive locali sono comuni; pertanto, i pazienti devono essere sottoposti a visite regolari di follow-up, per almeno 5 anni.

Competing interests - none declared.

Copyright © 2016 Andrea Corvino et al. FerrariSinibaldi Publishers
This is an open access article distributed under the Creative Commons Attribution (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. See http://www.creativecommons.org/licenses/by/4.0/.

DOI 10.19204/2016/lpsr8

Received: 10/12/2015 Accepted: 24/02/2016 Published: 15/03/2016
INTRODUCTION

Liposarcomas are the most common type of soft tissue sarcoma in adults. They represent approximately 20% of all mesenchymal malignancies and most frequently involve the retroperitoneum, trunk and extremities [1]. Hypopharyngeal and oesophageal localisations are extremely rare; the first hypopharyngeal case was reported in 1979 by Frey-Schottman et al. [2], and the first case originating from the cervical oesophagus was reported in 1983 by Mansour et al. [3]. Twenty-eight cases of hypopharyngeal liposarcomas have been reported in the literature (Table 1) [2, 4-25]. The aim of this systematic review was to determine the natural history, imaging features, histology, treatment and prognosis of hypopharyngeal liposarcomas. This is the first systematic review that analyses all reported cases of hypopharyngeal liposarcomas. The evaluation of all cases of such a rare disease is important to improve the diagnosis and therapeutic options in daily clinical practice.

MATERIALS AND METHODS

A systematic review of the literature was performed using PubMed and Ovid, following the statements of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [26]. No language limitations were set. The primary search was performed using the terms “(liposarcoma OR lipomatous tumor) AND (hypopharynx OR hypopharyngeal)”. The inclusion criteria were clinical trials, cohort studies, case-control studies, case reports and case series on hypopharyngeal liposarcomas published up to and including 2015. The abstracts of all suitable articles were examined. The references of the selected publications were assessed to identify further reports not found by database searching; the same selection criteria were applied. Two independent reviewers (CA, RG), working separately, extracted the data from all the eligible studies, which were subsequently crosschecked. All retrieved full-texts articles were included in the review by a consensus of all the authors. From 77 articles, 23 articles were selected for inclusion in this systematic review (Fig. 1). All the selected articles were case reports or case series. The survival rate was calculated. Numerical continuous variables were expressed as means ± standard deviation and nominal variables were described by the absolute and relative (%) frequency.

NATURAL HISTORY AND DIAGNOSIS

The first symptom of a hypopharyngeal liposarcoma is intermittent, gradually worsening dysphagia, initially to solid food and then to liquids. This can be reported for months before the diagnosis. Dysphagia is usually accompanied by weight loss due to the diagnostic delay, which is caused by the nonspecific nature of the symptoms. The sensation of a foreign body in the throat, hoarseness and airway obstruction are sometimes reported. Rarely, oral extrusion of an elongated smooth mass is observed. The literature contains no report of palpable cervical lymphadenopathies.

Basing on the available data, the mean age is 57.46 ± 17.88 years (range 20–90 years), with a peak in the sixth and seventh decades (n=14). The male/female ratio is 25/2. Important factors in the aetiology of liposarcomas include genetics, trauma and prior irradiation exposure. Neurofibromatosis (von Recklinghausen’s disease) and familial cancer syndromes, which is inherited as an autosomal dominant trait, are associated with an increased risk of liposarcomatous transformation [27]. There are no reports of a correlation with alcohol and smoking.

The diagnostic procedures for liposarcomas are based mainly on the barium swallow test and endoscopic examinations. In patients with liposarcomas, barium swallow examinations most often show a smooth-walled filling defect and widened atonic oesophagus. Flexible fibre optic laryngoscopy usually reveals a soft tissue mass, apparently arising from the piriform sinus (n=17), posterior wall of the hypopharynx (n=6) or post-cricoid area (n=3), without vocal fold motility disorders. Flexible oesophagastroduodenoscopy re-
presents an important tool for revealing pedunculated polypoid masses or an apparent ab extrinseco compression in the cervical oesophagus. Transmural liposarcomas present as an apparent ab extrinseco compression and four cases were reported. Radiological investigations are necessary in most cases to determine the precise size, localisation and extension of the tumour and its association with neurovascular structures. They are also necessary to detect distant metastases [27].

In the past, oesophagography with gastrographin was used to show a dilated oesophagus, with disomogeneous contrast opacification due to multiple filling defects throughout the oesophagus, sometimes from the criocopharyngeus down to the gastroesophageal junction. No coordination disorder of swallowing is usually observed in cases of pedunculated liposarcomas. However, oesophagography with gastrographin is now considered obsolete. Computed tomography (CT) and magnetic resonance (MR) can better define the pathology.

In cases of liposarcomas of the hypopharynx, transmural liposarcomas or liposarcomas protruding into the lumen, CT imaging reveals a heterogeneous mass, with fat-like density. The mass is usually mildly enhanced after the administration of intravenous contrast medium. The contours of the tumor are usually smooth [28]. MR scans reveal an inhomogeneous signal intensity mass with internal high-signal intensity foci on n-phase T1-weighted images of a dilated oesophagus and decreased signal intensity of the foci on out-of-phase T1-weighted images, indicating a fat-containing mass. A heterogeneous mass is also observed on T2-weighted images. After the administration of gadolinium, the mass is inhomogeneously enhanced. The appearance of the liposarcoma depends on its degree of differentiation with a more differentiated tumour having a more intense fat signal [28]. A definitive diagnosis can be achieved by performing a biopsy under a laryngoscope. Macroscopically the tumour presents as a soft, yellow, well-circumscribed and slowly growing mass, usually covered by normal mucosa. The liposarcoma may be pedunculated or transmural. The tumour size (maximum dimension) ranges from 3 to 21.5 cm (mean 7.60 ± 5.77 cm). In five cases, the maximum dimension was greater than 15 cm. Only two patients had a liposarcoma greater than 20 cm.

The most widely accepted classification system is that of Enzinger and Weis, who divided these tumours into five subtypes: well differentiated, myxoid, pleomorphic, round cell and dedifferentiated [29, 30]. An atypical lipomatous tumour is considered synonymous with a well-differentiated liposarcoma. Dedifferentiation is defined by the coexistence of a non-lipogenic sarcoma of variable histological grade and a well-differentiated liposarcoma. Liposarcomas showing combined features are defined as mixed-type liposarcomas.

A well-differentiated liposarcoma (n=20) was the most common type reported. Dedifferentiated (n=3) and mixoid liposarcoma (n=2) of the hypopharynx were also observed. Only one patient with a mixed-type liposarcoma was reported in the literature. No cases of hypopharyngeal round cell liposarcomas were reported.

TREATMENT AND PROGNOSIS

The main treatment for liposarcomas is surgical excision. Incomplete excision is associated with an increased risk of local recurrence (80% in some studies). Therefore, support is growing for the use of post-operative radiotherapy. However, no study has provided conclusive evidence supporting chemotherapy in the treatment of head and neck liposarcomas [27]. As the fascia surrounding a liposarcoma is not a true enveloping layer, excision should be as wide and meticulous as possible. However, the extent of tumour excision is limited in the head and neck region because of the close proximity to neurovascular structures. Due to the low rate of nodal metastasis, treatment of lymph node areas is not indicated. In well-differentiated liposarcomas, in cases of
complete surgical resection, no adjuvant treatment is recommended. In cases of frequent recurrence, tumour dedifferentiation should be suspected [21]. There are two surgical approaches for hypopharyngeal liposarcomas: the cervical approach (lateral pharyngotomy) and endoscopic surgery. Endoscopic resection can be useful if there is evidence of a tumour peduncle and potential for curative resection [31]. Alternatively, endoscopic resection may provide palliation to patients with unresectable disease or may be followed by surgical resection in those with diseased margins. Simple excision, either endoscopically or via the external pharyngotomy approach, represents the most frequent treatment of cases reported in the literature, with a slight prevalence of the cervical approach. In only one case, partial laryngectomy was necessary. Two patients underwent post-operative radiotherapy or chemotherapy. However, data on chemotherapy schemes and radiotherapy doses are not reported in the original papers. The advantages of a transoral endoscopic approach with a CO2 laser are lower morbidity and the ability to resume oral feeding within 1 – 2 days. Moreover, this approach removes the need for tracheostomy, and the hospitalisation-time is shorter [17].

In cases of recurrence, more demolitive surgical approaches, such as total laryngectomy or total oesophagectomy, are needed. Local recurrence was reported in 9 (32%) cases. The average time between the first treatment and recurrence was 42.28 months. Therefore, patients should undergo regular examinations to rule out local recurrence. The survival rate of head and neck liposarcomas compares favourably with that reported for liposarcomas at other sites, particularly those in the retroperitoneum, where tumours have a poor prognosis [27]. The most reliable prognostic factors for patients with a hypopharyngeal liposarcoma are the grade, histological subtype, location and adequacy of the surgical treatment [27]. There 1-year disease-free survival rate is 89.47%. However, as some of the reported studies lack follow-up data, these survival rates are not conclusive.

CONCLUSIONS

The hypopharynx represents a rare site of a liposarcoma. Twenty-eight cases of hypopharyngeal liposarcomas are described in the literature. Although a hypopharyngeal liposarcoma represents a rare pathology, it should be kept in mind when a mass of the hypopharynx is discovered. The traditional evaluation is based on the barium swallow test and endoscopy. The fatty nature of the lesion is confirmed by a CT scan and/or MR. The main treatment for liposarcomas is wide surgical excision. The endoscopic approach plays an important role in management. Survival among patients with liposarcomas is dependent on the histological type and location. Local recurrence is common, but the risk of lymph node or distant metastasis is very low. Patients should undergo regular examinations to rule out local recurrence, at least up to 5 years.
Table 1. Hypopharyngeal liposarcoma: review of the literature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year of publication</th>
<th>Age (y)</th>
<th>Sex</th>
<th>Type of lesion</th>
<th>Tumor size (cm)</th>
<th>Site</th>
<th>Histology</th>
<th>1° Treatment</th>
<th>Re-currence</th>
<th>TTR 2° treatment</th>
<th>Follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frey-Schottman et al. [2]</td>
<td>1979</td>
<td>52</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>PS</td>
<td>WDL</td>
<td>SE</td>
<td>Yes</td>
<td>3 y</td>
<td>LP, pRT</td>
</tr>
<tr>
<td>Wenig et al. [5]</td>
<td>1990</td>
<td>60</td>
<td>M</td>
<td>NA</td>
<td>5.5</td>
<td>R PS</td>
<td>WDL</td>
<td>SE</td>
<td>Yes</td>
<td>5 y</td>
<td>SE</td>
</tr>
<tr>
<td>Wenig et al. [5]</td>
<td>1990</td>
<td>59</td>
<td>M</td>
<td>NA</td>
<td>5.5</td>
<td>R PS</td>
<td>WDL</td>
<td>SE</td>
<td>Yes</td>
<td>6 mo</td>
<td>SE</td>
</tr>
<tr>
<td>Wenig et al. [5]</td>
<td>1990</td>
<td>77</td>
<td>M</td>
<td>Polyp</td>
<td>4</td>
<td>R PS</td>
<td>WDL</td>
<td>SE</td>
<td>Yes</td>
<td>3 y</td>
<td>TL</td>
</tr>
<tr>
<td>Baj et al. [6]</td>
<td>1991</td>
<td>63</td>
<td>M</td>
<td>Polyp</td>
<td>4.6</td>
<td>R PS</td>
<td>WDL</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 5 y</td>
</tr>
<tr>
<td>Wenig et al. [7]</td>
<td>1995</td>
<td>57</td>
<td>M</td>
<td>Polyp</td>
<td>14.5</td>
<td>PS</td>
<td>WDL</td>
<td>EE</td>
<td>Yes</td>
<td>14 y</td>
<td>LP</td>
</tr>
<tr>
<td>Wambeek et al. [8]</td>
<td>1996</td>
<td>60</td>
<td>M</td>
<td>Polyp</td>
<td>NA</td>
<td>PCA, R PS</td>
<td>WDL</td>
<td>SE, pRT, pCT</td>
<td>No</td>
<td>---</td>
<td>NED 12 mo</td>
</tr>
<tr>
<td>Reed et al. [9]</td>
<td>1996</td>
<td>NA</td>
<td>M</td>
<td>Polyp</td>
<td>21.5</td>
<td>L PS</td>
<td>WDL</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 69 mo</td>
</tr>
<tr>
<td>Fahmy et al. [10]</td>
<td>1998</td>
<td>51</td>
<td>M</td>
<td>Polyp</td>
<td>NA</td>
<td>L PS</td>
<td>WDL</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 2 mo</td>
</tr>
<tr>
<td>Mandell et al. [11]</td>
<td>1999</td>
<td>90</td>
<td>F</td>
<td>Transmural</td>
<td>6.5</td>
<td>PCA, R PS</td>
<td>WDL</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 9 mo</td>
</tr>
<tr>
<td>Mouret et al. [12]</td>
<td>1999</td>
<td>56</td>
<td>M</td>
<td>Polyp</td>
<td>10</td>
<td>PWH, L PS</td>
<td>MTL</td>
<td>LP</td>
<td>Yes</td>
<td>2.5 mo</td>
<td>EE</td>
</tr>
<tr>
<td>Almela Cortés et al. [13]</td>
<td>2002</td>
<td>71</td>
<td>M</td>
<td>Polyp</td>
<td>11</td>
<td>PWH</td>
<td>WDL</td>
<td>LP</td>
<td>Yes</td>
<td>2 y</td>
<td>TE</td>
</tr>
<tr>
<td>Sanz Gonzalo et al. [14]</td>
<td>2002</td>
<td>81</td>
<td>M</td>
<td>Polyp</td>
<td>NA</td>
<td>R PS</td>
<td>ML</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 4 y</td>
</tr>
<tr>
<td>Gonzales-Lois et al. [15]</td>
<td>2002</td>
<td>69</td>
<td>M</td>
<td>Polyp</td>
<td>3</td>
<td>PS</td>
<td>DDL</td>
<td>PL</td>
<td>No</td>
<td>---</td>
<td>NED 6 mo</td>
</tr>
<tr>
<td>Cannizzaro et al. [16]</td>
<td>2003</td>
<td>20</td>
<td>M</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>PL</td>
<td>SE</td>
<td>No</td>
<td>---</td>
<td>NED 8 y</td>
</tr>
<tr>
<td>Luna-Ortiz et al. [17]</td>
<td>2009</td>
<td>23</td>
<td>M</td>
<td>Transmural</td>
<td>9.5</td>
<td>R PS</td>
<td>ML</td>
<td>LP</td>
<td>Yes</td>
<td>3 y, 7 y and 8 y</td>
<td>NA 7 y, 8 y</td>
</tr>
<tr>
<td>Giondano et al. [18]</td>
<td>2010</td>
<td>50</td>
<td>M</td>
<td>Polyp</td>
<td>5</td>
<td>R PS</td>
<td>DDL</td>
<td>SE</td>
<td>No</td>
<td>---</td>
<td>NED 6 mo</td>
</tr>
<tr>
<td>McQueen et al. [19]</td>
<td>2010</td>
<td>50</td>
<td>M</td>
<td>Polyp</td>
<td>4</td>
<td>PWH, R PS</td>
<td>ALT/ WDL</td>
<td>EE</td>
<td>NA</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>El Ouakif et al. [20]</td>
<td>2011</td>
<td>64</td>
<td>M</td>
<td>Polyp</td>
<td>NA</td>
<td>PWH, L PS</td>
<td>WDL</td>
<td>LP, pRT</td>
<td>No</td>
<td>---</td>
<td>NED 1 y</td>
</tr>
<tr>
<td>El Ouakif et al. [20]</td>
<td>2011</td>
<td>80</td>
<td>M</td>
<td>Transmural</td>
<td>NA</td>
<td>L PS</td>
<td>WDL</td>
<td>EE</td>
<td>No</td>
<td>---</td>
<td>NED 6 mo</td>
</tr>
<tr>
<td>Takano et al. [21]</td>
<td>2011</td>
<td>56</td>
<td>M</td>
<td>Transmural</td>
<td>NA</td>
<td>PWH</td>
<td>WDL</td>
<td>EE</td>
<td>No</td>
<td>---</td>
<td>NED 24 mo</td>
</tr>
<tr>
<td>Nouri et al. [22]</td>
<td>2011</td>
<td>34</td>
<td>F</td>
<td>Polyp</td>
<td>5</td>
<td>R PS</td>
<td>WDL</td>
<td>EE</td>
<td>No</td>
<td>---</td>
<td>NED 12 mo</td>
</tr>
<tr>
<td>Bergmark et al. [23]</td>
<td>2012</td>
<td>57</td>
<td>M</td>
<td>Polyp</td>
<td>11</td>
<td>PCA, L PS</td>
<td>WDL</td>
<td>EE</td>
<td>No</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Sotirović et al. [24]</td>
<td>2014</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>---</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Riva et al. [25]</td>
<td>2015</td>
<td>81</td>
<td>M</td>
<td>Polyp</td>
<td>21</td>
<td>PCA, L PS</td>
<td>DDL</td>
<td>LP</td>
<td>No</td>
<td>---</td>
<td>NED 12 mo</td>
</tr>
</tbody>
</table>
Records identified through database searching (n = 77)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 77)

Records screened (n = 77)

Records excluded (n = 54)

Full-text articles assessed for eligibility (n = 23)

Full-text articles excluded, with reasons (n = 0)

Studies included in qualitative synthesis (n = 23)

Figure 1. Flow Diagram of Study Selection
References

