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Abstract

Introduction: Dengue fever has been one of the most concerning endemic diseases of recent times. 
Every year, 50-100 million people get infected by the dengue virus across the world.  Historically, it 
has been most prevalent in Southeast Asia and the Pacific Islands. In recent years, frequent dengue 
epidemics have started occurring in Latin America as well. This study focused on assessing the 
impact of different short and long-term lagged climatic predictors on dengue cases. Additionally, 
it assessed the impact of building an ensemble model using multiple time series and regression 
models, in improving prediction accuracy.
Materials and Methods: Experimental data were based on two Latin American cities, viz. San Juan 
(Puerto Rico) and Iquitos (Peru). Due to weather and geographic differences, San Juan recorded 
higher dengue incidences than Iquitos. Using lagged cross-correlations, this study confirmed the 
impact of temperature and vegetation on the number of dengue cases for both cities, though in 
varied degrees and time lags. An ensemble of multiple predictive models using an elaborate set of 
derived predictors was built and validated.
Results: The proposed ensemble prediction achieved a mean absolute error of 21.55, 4.26 points 
lower than the 25.81 obtained by a standard negative binomial model. Changes in climatic 
conditions and urbanization were found to be strong predictors as established empirically in other 
researches. Some of the predictors were new and informative, which have not been explored in any 
other relevant studies yet.
Discussion and Conclusions: Two original contributions were made in this research. Firstly, a 
focused and extensive feature engineering aligned with the mosquito lifecycle. Secondly, a novel 
covariate pattern-matching based prediction approach using past time series trend of the predictor 
variables. Increased accuracy of the proposed model over the benchmark model proved the 
appropriateness of the analytical approach for similar epidemic prediction research.
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Riassunto

Introduzione: La febbre Dengue è stata una delle malattie infettive a carattere endemico più 
preoccupanti degli ultimi tempi. Ogni anno 50-100 milioni di persone vengono infettate dal virus 
Dengue in tutto il mondo. Dal punto di vista storico, è stata la malattia infettiva più diffusa nel 
Sudest Asiatico e nelle Isole del Pacifico. In tempi recenti si sono verificate frequenti epidemie di 
Dengue in America Latina. Questo studio si è focalizzato sulla valutazione dell’impatto di diffe-
renti predittori climatici a breve e lungo termine sui casi di Dengue. Lo studio, inoltre, ha valutato 
l’impatto di un modello complesso costituito da multiple serie temporali e modelli di regressione 
per migliorare l’accuratezza predittiva di questa patologia.
Materiali e Metodi: Dati sperimentali sono stati ottenuti da due città dell’America Latina, San 
Juan in Portorico ed Iquitos in Perù. Per le differenze climatiche e geografiche, San Juan ha regi-
strato un’incidenza più alta di Dengue rispetto ad Iquitos. Usando correlazioni crociate differite, 
questo studio ha confermato l’impatto della temperatura e della vegetazione sul numero di casi 
di Dengue per entrambe le città, sebbene con gradi e gap temporali differenti. E’ stata costruita e 
validata una strategia complessa fatta di modelli predittivi multipli attraverso un set elaborato di 
predittori derivati.
Risultati: La strategia predittiva complessa proposta ha ottenuto una media di errore assoluto pari 
a 21,55, rappresentando 4,26 punti in meno dei 25,81 ottenuti attraverso il modello standard nega-
tivo binomiale. I cambiamenti nelle condizioni cimatiche e nell’urbanizzazione sono risultati essere 
dei forti predittori come empiricamente evidenziato da altre ricerche scientifiche. Alcuni predittori 
sono risultati essere nuovi ed utili, non ancora esplorati in precedenti e rilevanti studi.
Discussione e Conclusioni: Due risultati originali sono stati ottenuti in questa ricerca. Innanzitut-
to, un aspetto ingegneristico focalizzato ed allineato con il ciclo vitale della zanzara vettore. Secon-
dariamente, un nuovo approccio predittivo basato sulla corrispondenza di modelli covariati usando 
pregresse serie temporali degli andamenti delle variabili predittive. Un incrementata accuratezza 
del modello proposto rispetto al modello standard ha provato l’appropriatezza dell’approccio ana-
litico nell’ambito della ricerca scientifica sulle previsioni riguardanti simili epidemie.
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TAKE-HOME MESSAGE
Climatic conditions and urbanization have considerable impact on Aedes mosquitoes’ lifecycle which 
subsequently affects the spread of dengue virus. Focused feature engineering can reveal these lagged 

relationships to form informative predictors. Additionally, ensemble prediction by combining outputs 
from different models is found to improve accuracy over the candidate models.
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INTRODUCTION
Dengue fever and dengue haemorrhagic fe-
ver are the predominant arthropod-borne 
viral diseases in the world [1]. Humans get 
infected when bitten by Aedes mosquitoes, 
the vector (carrier) of dengue virus (DENV) 
[2]. This paper focuses on the analysis of the 
occurrence of dengue fever in two cities, na-
mely San Juan, Puerto Rico and Iquitos, 
Peru. Dengue outbreak is more prominent in 
densely populated areas, as the frequency of 
Aedes mosquito bites and adaptation of the 
vector mosquito are higher [3]. San Juan has 
a population density of 3,190 per km², whe-
reas Iquitos has 1,222 per km² [4]. This ma-
kes transmission of dengue easier in San Juan 
than in Iquitos. In the absence of any effective 
vaccine, the most effective way to prevent and 
curb dengue transmission is by reducing the 
Aedes vector [5].  
The ecology of DENV is inherently tied to 
the mosquito life cycle. The metamorphosis 
from egg to adult stage takes about one-and-
a-half to three weeks, while the adult life span 
ranges from two weeks to a month depending 
on environmental conditions [6]. The distri-
bution of Aedes mosquitoes is spatially and 
temporally dynamic, as their life cycles are 
short and strongly influenced by environ-
mental factors [7]. From the Aedes mosquito 
bite, dengue symptoms usually start anywhere 
from 4 to 10 days [8]. Cooler temperatures 
during the early stage of the mosquito bree-
ding cycle indicate a reduced transmission of 
the dengue virus [9].
Modelling of such complex relationships and 
interactions between diseases and climatic 
precursors has been recognized as a difficult 
problem in many studies [2, 10–12]. Gon-
zalez et al. used generalized additive models 
to capture the non-linear relationships with 
different weather variables [10]. Sharma et al. 
used advanced machine learning techniques 
such as artificial neural networks and sup-
port vector machines for predicting malaria 
outbreaks, where the latter demonstrated a 
significantly better prediction performance 
[12]. Using autocorrelation at time delay of 
up to 3 months and generalized linear mo-

dels, a strong association was shown between 
temperature and rainfall with dengue fever 
incidence [13]. 
A study on the influence of meteorological 
factors on the dengue virus incidence in San 
Juan showed that these factors and dengue 
transmission patterns varied between years, 
with increased number of dengue cases pea-
king after higher rainfall in warmer years [14]. 
Through wavelet analysis, dengue incidences 
in Iquitos were shown to have seasonal pat-
terns with no strong relationship with the cli-
matic variables [15]. Similar studies revealed 
that climatic conditions modify the relative 
influence of human and climatic factors on 
dengue transmission patterns [16, 17]. Pre-
diction of dengue incidence in San Juan was 
attempted using the NASA satellite enhanced 
weather forecasts with unclear model accuracy 
due to errors in weather forecasts [18].
The above studies demonstrate that the im-
pact of various climatic as well as socio-envi-
ronmental factors on dengue have been stu-
died extensively all over the world over last 
15 years. Eventually, there have been other 
studies [19, 20] summarizing, comparing 
and connecting findings across these studies. 
Multiple linear regression (MLR) and time 
series forecasting using Auto-Regressive In-
tegrated Moving Average (ARIMA) models 
were used most frequently for predicting 
the number of dengue cases in these papers. 
A few studies also experimented with other 
formulations and approaches such as Poisson 
regression [21], negative binomial regression 
[22] and spatiotemporal clustering [23].
However, one common limitation of these re-
searches was that they never explored the be-
nefits of any ensemble prediction approaches 
by building and combining different predicti-
ve models with the same data. Moreover, the-
se studies have tackled the problem either as a 
regression or as a time series forecasting pro-
blem. A limited number of studies that did 
use ensembles [24–26], have rarely used any 
time-series based models as candidates. Only  
it [26] was found to use a sequential combi-
nation of wavelet analysis, genetic algorithm 
and support vector machines for dengue case 
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prediction. However, the support vector ma-
chine was used as a learner within the genetic 
algorithm and not as an independent model 
generating a separate prediction for dengue 
cases. Hence, it should not be considered a 
stacked ensemble approach in its traditional 
sense.
Considering the above, the focus of this study 
was twofold: first, to explore the different cli-
matic variables and identify appropriate short 
and long-term lagged predictors that showed 
strong predictive power empirically; and se-
condly, to build a comprehensive ensemble 
prediction framework by combining different 
time series and regression based predictions. 
This was done to assess the applicability and 
superiority of such a technique in improving 
prediction accuracy over the individual models.

MATERIALS AND METHODS

Data
The DengAI data was downloaded from the 
DrivenData website as part of a competition 
on predicting the spread of dengue disease 
[27]. The data initially came from sources 
supporting the Predict the Next Pandemic Ini-
tiative [28]. Beyond dengue surveillance data, 
other measurements pertained to vegetation, 
precipitation, and temperature. According to 
[29], the dengue surveillance data were pro-
vided by the U.S. Centers for Disease Con-
trol and Prevention, Department of Defen-
se’s Naval Medical Research Unit 6, Armed 
Forces Health Surveillance Center, in colla-
boration with the Peruvian government and 
U.S. universities. On the other hand, envi-
ronmental and climate data were provided by 
the National Oceanic and Atmospheric Ad-
ministration (NOAA), an agency of the U.S. 
Department of Commerce. More specifically, 
data included:
• Normalized Difference Vegetation Index 

(NDVI) measurements;
• Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural 
Networks (PERSIANN) satellite precipi-
tation measurements;

• National Centers for Environmental Pre-
diction Climate Forecast System Reanaly-
sis measurements;

• Global Historical Climatology Network 
daily climate data weather station measu-
rements. 

For the competition, the training data com-
prised 20 continuous features, recorded we-
ekly from 30 April 1990 to 25 June 2010, to-
talling 1,456 records (Table 1).
Data exploration revealed the difference in 
data characteristics of the two cities, with the 
20 features showing different data ranges and 
distribution (Figure 1).
San Juan is located along the north-eastern 
coast of Puerto Rico and lies south of the 
Atlantic Ocean. The city occupies an area of 
199.2 km2, of which 75.4 km2 (37.83%) is wa-
ter [30]. Based on the data provided, the city 
has a tropical monsoon climate, with an ave-
rage station temperature of 27.0 °C, ranging 
from 17.8 °C to 35.6 °C between 1990 and 
2008. Rainfall is distributed throughout the 
year, with an average station precipitation of 
26.8 mm, ranging from 0 to 305.9 mm. 
Iquitos is the most northern Peruvian city 
and has an area of 368.9 km2. It experiences 
an equatorial climate, with constant rainfall 
throughout the year, without a distinct dry se-
ason, but a wetter summer [31]. Station tem-
peratures range from 14.7 to 33 °C, with an 
average daily station temperature of 27.5 °C. 
The average daily station precipitation is 62.5 
mm, ranging from 0 to a high 543.3 mm. 

Data Preparation
The data were analysed as part of pre-pro-
cessing. Actions were taken to enable model 
generalisation. In making these changes, care 
was taken to ensure that the data ranges and 
distribution were not adversely impacted.  

Analysis of Missing Values
Analysis of the 20 features revealed that 
NDVI NE had 194 missing values (about 
20% of available data); with additional mis-
sing values noted for all the other features. To 
enable generalization, the missing values were 
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Table 1. Descriptive statistics of original data provided.

Feature Min Max Mean Std. Dev Outlier (3σ) Extreme (5σ) Null Value
Year 1990 2010
Week of Year 1 53
Week Start Date 19900430 20100625
NDVI NE -0.41 0.51 0.14 0.14 5 194
NDVI NW -0.46 0.45 0.13 0.12 4 52
NDVI SE -0.02 0.54 0.20 0.07 9 22
NDVI SW -0.06 0.55 0.20 0.08 11 22
Precipitation Amt 0.00 390.60 45.76 43.72 14 3 13
Reanalysis Air Temp 294.64 302.20 298.70 1.36 10
Reanalysis Avg Temp 294.89 302.93 299.23 1.26 3 10
Reanalysis Dew Point Temp 289.64 298.45 295.25 1.53 10 10
Reanalysis Max Air Temp 297.80 314.00 303.43 3.24 3 10
Reanalysis Min Air Temp 286.90 299.90 295.72 2.57 6 10
Reanalysis Precipitation Amt 0.00 570.50 40.15 43.43 28 5 10
Reanalysis Relative Humidity 57.79 98.61 82.16 7.15 2 10
Reanalysis Saturated Precipitation Amt 0.00 390.60 45.76 43.72 14 3 13
Reanalysis Specific Humidity 11.72 20.46 16.75 1.54 3 10
Reanalysis Diurnal Temp Range 1.36 16.03 4.90 3.55 1 10
Station Avg Temp 21.40 30.80 27.19 1.29 2 43
Station Diurnal Temp Range 4.53 15.80 8.06 2.13 3 43
Station Max Temp 26.70 42.20 32.45 1.96 2 20
Station Min Temp 14.70 25.60 22.10 1.57 8 14
Station Precipitation 0.00 543.30 39.33 47.46 22 7 22
Total Dengue Cases 0.00 461.00 24.68 43.60 9 15

imputed using multiple linear regression (ste-
pwise selection) using the other predictor va-
riables. This approach provided data for most 
missing values. For rows with missing values 
en-masse, the NDVI values were replaced 
with the immediate preceding values, whi-
le the Reanalysis and Station variables were 
replaced with the average of two preceding 
values. A block of NDVI values was missing 
for consecutive 14 cases in 1994. These were 
replaced by the average of the last two rows 
(progressively) and the same week of the pre-
ceding year.

Analysis of Outliers
Aside from missing values, outliers were also 
detected, using 3σ as inner outlier limit and 
5σ as extreme limit, where σ was the obser-
ved standard deviation of the feature. Analy-
sis of these outliers revealed that they were 

plausible values, and as such, they were not 
treated for this study. 

Variable Rescaling
The wide variation in the value ranges resul-
ted from the use of different scale, and ne-
cessitated rescaling to avoid biasing the data 
models. All fields were brought to comparable 
scales, such as °C for temperature and mm for 
precipitation.

Correlation Analysis
Correlation analysis of the cleaned dataset 
indicated that several variables had low to 
medium correlation with each other and with 
total dengue cases. The presence of variable 
correlation suggested possible multi-collinea-
rity and opportunity for dimension reduction 
(Figure 2).
• Although correlations differed for each 
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Figure 1. Data distribution by city (SJ, 936 records and IQ, 520 records).

Legend: San Jose Iquitos

city, the reanalysis specific humidity and 
reanalysis dew point temperature were the 
most strongly correlated with total cases. 
This supported the assumption that mo-
squitoes thrive in wet climates, which could 
lead to more dengue cases. 

• Temperature and total dengue cases showed 
positive correlation, indicating higher cases 
of dengue during warm weather. 

• In general, the precipitation measurements 
had weak correlation to total cases.  

This presents data dimension reduction op-
portunity in the models.

Methods
To ensure proper rigor, objectivity and gene-
ralizability of the solutions, due importance 
was placed on the key modelling aspects as 
detailed below.

Performance Metrics
Mean Absolute Deviation (MAD) was cho-
sen as the performance evaluation metric in 
line with the expectations set by the competi-
tion. MAD was calculated as:

  
(1)

where Ai denoted the actual dengue cases and 
Âi denotes the predicted number of dengue 
cases. It should be noted here that this me-
tric penalizes underpredictions during epide-
mic periods less severely than the traditional 
Mean Square Error (MSE) metric. This can 
help select the model that generates more 
accurate predictions for the regular / normal 
time periods.

Feature Engineering
Raw features available for analysis were of 
four different types, viz. temperature, precipi-
tation, humidity and the vegetation level. Fol-
lowing the biological lifecycle of mosquitoes 
and propagation of the dengue virus, these 
factors were expected to impact the dengue 
cases at different lag periods. In this aspect, 
related studies have largely been different 
from each other and sometimes conflicting 
regarding the lag periods. 
One study [32] found 2 months’ lag for rain-
fall and temperature to correlate well while 
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Figure 2. Correlation bar-plot for predictor importance.

another study [21] found minimum tempera-
ture of last two weeks to be a stronger predi-
ctor. Multi-wave dengue outbreak in Taiwan 
was found to be positively influenced by 
rainfall and temperature volatility because of 
two typhoons [33], while another study [34] 
found negative association with temperature 
with a 2 months’ lag.
Based on these, it was concluded that the lag-
ged effects of the covariates may not be uni-
form between the two cities under study. The 
same was supported by [11] which found that 
the impact of climatic and other predictors 
varied widely, driven by the geographical and 
tropical location of the place. Hence, the lag 
analysis was carried out separately for the two 
cities expanding up to previous 32 weeks - the 
maximum period that was found to explain 
the relationships intuitively based on mosqui-
to lifecycle and typical propagation period of 
the virus.  
Analytically, the appropriate lags for each 
variable were identified based on lagged 
cross-correlation plots using Transfer Fun-
ctions. Figure 3 explains how the most suited 
lags were decided using the average tempera-
ture variable for San Juan as an example.
Both the most positively and negatively cor-

related lagged windows were retained as two 
different lagged predictors. Averaging over 
multiple weeks (e.g. 8-11 and 30-31 in Fi-
gure 3) helped smooth the derived variables 
and was expected to improve their predictive 
powers further.
Apart from the lagged variables, another set 
of derived variables were created using the 
cross-sectional interactions among these va-
riables to mimic the different weather pat-
terns known to impact the spread of dengue, 
either positively or negatively, e.g. a hot-and-
humid variable was created by combining the 
temperature and relative humidity variables, a 
volatile-weather week was identified based on 
the difference between maximum and mini-
mum temperature for the same week.  
Finally, a decomposition based time series fo-
recasting model was created for San Juan and 
Iquitos separately using the actual dengue 
cases. For San Juan, a sinusoidal seasonality 
was the best fit that achieved its peak during 
post-monsoon season. For Iquitos, a 3-point 
centred moving average provided the best fit 
for seasonality since Iquitos typically faced 
multiple and random monsoon sub seasons 
that made the method of curve-fitting infe-
asible. These time series forecasts were used 
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as additional predictors in the final models 
(Figure 4).
Thus, there were 103 additional predictors 
derived from the given features. In the re-
viewed literature, there are no studies that 
performed such elaborate and extensive fea-
ture engineering. These new derived features 
were expected to provide substantial lifts in 
the model performances.

Predictive Modelling
As discussed in the Introduction section, the-
re have been limited attempts at combining 
different modelling approaches for prediction 
of dengue cases. Hence, an ensemble predi-
ction framework (Figure 5) was designed and 
applied by using three different candidate 

models. The candidate models were chosen 
carefully to address the different aspects of 
the prediction goal. The subsequent sections 
elaborate more on these candidate models 
and the rationale behind their selection.

Benchmark Model: Negative Binomial Mo-
del (NGB)
Though Poisson regression was used in multi-
ple studies, a more generalized negative bino-
mial regression was selected to create bench-
mark performance on this dataset, in line with 
the actual competition. This was to help con-
trast performance of the proposed framework 
against an established model. The likelihood 
function for Negative Binomial distribution 
can be written as: 

Figure 3. Lagged variable creation process based on cross-correlation.

Figure 4. Time series decomposition based prediction for Dengue cases.
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Figure 5. Model development process flow.

(2)
where α denotes the over-dispersion parame-
ter. As a result, Poisson regression becomes a 
special case of NGB when α=0. Use of NGB 
created a stronger benchmark performance 
on the dataset than a Poisson regression.

Multiple Linear Regression on Combined 
Data
The first model is an MLR model built on the 
combined data of the two cities. Though most 
studies recommended building different mo-
dels for different geographic locations (two 
cities in this case), certain limitations were 
realized with this approach. In case a city has 
never faced any major dengue outbreaks in 
the study period (as was the case for Iquitos); 
the model will never learn to predict any high 
dengue outcomes. Building a common model 
will help cross-learn these different scenarios 
effectively to make the future predictions for 
both the cities more robust.

Weighted Multiple Linear Regression on 
Each City
To balance the possible reduction in accuracy 
of the first model due to its robustness, a set 
of city-specific regression models were built 
to learn the unique relationships and influen-
ces of the covariates on dengue cases. Fur-
thermore, it was evident from Figure 4 that 
dengue epidemics were rare and occurred 
typically at 3-5 years intervals. A Weighted 
MLR was used by giving higher weights to 
these epidemic periods. A logarithmic weight 
as log (100 + Ai) was found to provide the best 
results on the holdout data. 

Covariate Pattern-Matching
Both the above approaches followed regres-
sion methodology and did not use any time 
series elements apart from the lagged cova-
riates. Though there were several theoretical 
frameworks for multivariate time series fo-
recasting and panel data analysis, they were 
either not applicable (e.g. Vector Auto-Re-
gression) due to absence of actual dengue ca-
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ses for the test period or the theoretical foun-
dations were too complex and restrictive to 
get strong empirical results (e.g. Generalized 
Estimating Equations). This led us to create 
a simple, intuitive yet powerful methodology 
which delivered strong empirical results on 
these datasets.
There were two specific motivations behind 
the creation of this new methodology. Firstly, 
the test data had no information on the actual 
dengue cases which made application of any 
traditional time series techniques infeasible 
since most advanced time series models (e.g. 
ARIMA) depend on recent actuals. Secondly, 
it was noted that dengue cases followed cer-
tain trends of other covariates with a lag, e.g. 
dengue cases in San Juan generally increased 
post-summer, which is characterised by the 
lagged series of temperature attaining a peak 
at 4-6 weeks back followed by a decreasing 
trend in the last 4-6 weeks. Since the lags 
were not always fixed, it was impossible to 
capture these trend patterns in the individual 
lagged covariates that were created.
Covariate pattern matching was built on 
the idea that a similar past pattern of co-
variates (C) is indicative of the likely chan-
ges in the dependent variable (A), i.e. the 
number of dengue cases. Similarity was de-
fined using Euclidean distance between 
the latest (Ct–k+1,  ..., Ct) and a past pattern  
(Ct–m–k+1, ..., Ct–m) based on a fixed window of 
length k. This memory-based algorithm then 
iterated over the training data range (m = 1, 2, 
...) to identify the closest matching window  
(Ct–M–k+1, ..., Ct–M).  
Once this lagged time point (M) was identi-
fied, change in dengue cases, expressed as: 
              (3)
for the latest day in that window (t-M) was 
calculated. This became a prediction of the 
expected change in dengue cases for the la-
test day. The following diagram explains this 
pattern matching idea further using a sliding 
window of 26 weeks (6 months) that was 
found to work the best empirically (Figure 6).
The same matching process was then repe-
ated for all 19 covariates to get 19 different 

predictions about the expected change over 
previous day’s actual. Hence, the final predi-
ction for dengue cases on day t became:

      
(4)

Since, recent actuals (At–1) were not available 
in the test data, these were replaced with the 
predicted values progressively to extend the 
time series. This approach can also be thought 
of as a random subspace based k nearest nei-
ghbour method where k=1 was considered for 
each subspace of predictors and the identified 
neighbours were subsequently aggregated by 
averaging.

RESULTS
The following table summarizes the cova-
riates and their corresponding lags that were 
selected in each of the regression models. A 
red coloured lag indicates negative relation-
ship while a green indicates a positive one. It 
can be observed that both small and large lags 
featured for different variables as significant 
predictors (Table 2).
Table 3 shows a summary of the individual 
model and ensemble accuracies, based on 
both the training and test data withheld for 
the live competition.
Predictions for the two cities using each can-
didate model and ensemble are shown below 
(Figure 7).
The output showed that the models captured 
the seasonal patterns in dengue cases for the 
two cities well. Furthermore, the Covariate 
Pattern Matching predictions on training data 
showed significant improvement over regres-
sion based methodologies. The results were 
even better than an Auto-Regressive (AR1) 
time series model which provided an MAD 
of 8.15. It should also be noted here that the 
performance of this model showed deteriora-
tion in the test data. This was due to the repla-
cement of the actuals for previous days with 
the predicted values, since actual values were 
not available for test period. Using actual past 
counts is expected to result in a performance 
similar to the training data even for the test 
period.
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Figure 6. Demonstration of the Covariate Pattern Matching approach.

Figure 7. Weekly Dengue cases prediction for the test period.

Covariate MLR-Combined WMLR-San Juan WMLR-Iquitos

Trend 0 0 0

Precipitation 16-23 16-23, 3-29

Vegetation 15-21 3-20

Max. Temp 0 0, 10-15 9-12

Avg. Temp 2-4, 23-24

Min. Temp 9-11, 18-23 30-32 15-17

Temp Range 27-32, 10-17 24-25

Rel. Humidity 15-17

Table 2. Independent variables (numbers show lags) selected in each regression model.

Model Training Accuracy (MAD) Test Accuracy (MAD)

Benchmark Model (NGB) 17.28 25.81

MLR on Combined Data 16.94 23.68

WMLR on City-wise Data 16.28 24.00

Covariate Pattern-Matching 7.23 26.05

Ensemble 8.94 21.55

Table 3. Performance details for the candidate models and final ensemble.
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DISCUSSION AND    
CONCLUSIONS
Multiple models, both time series and regres-
sion based, were built in this study. To allow 
for an objective performance benchmarking, 
a theoretically justified negative binomial 
model, with a mean absolute deviation of 
25.81 based on test data, was chosen. Both 
MLR-based models achieved superior per-
formance of 23.68 and 24.00 MAD respecti-
vely. This was attributed to the elaborate and 
extensive feature engineering which helped 
create meaningful derived variables from the 
raw covariates. Each feature selected in the 
final models made intuitive sense and was 
in-line with the prevailing weather patterns 
in each city.  
Vegetation had a strong negative relationship, 
which indicated that less urbanized areas are 
less prone to dengue propagation. This ma-
tched the findings from other researches whe-
re unplanned urbanization has been linked to 
dengue spread in different geographies [20]. 
Similarly, high temperature and humidity in 
recent past were found to correlate positively 
with dengue spread. This too was logical, as 
Aedes mosquitoes are known to flourish in 
hot and humid weather [11]. Specifically, for 
Iquitos, however, larger lag in temperature 
(23-24 weeks) had a negative relationship. 
This was probably because Iquitos faces a hi-
gher average temperature throughout the year 
and a further increase above 30 °C during 
summer. Since more than 30 °C temperature 
becomes somewhat hostile for larva and pupa 
growth of Aedes mosquitoes [16], it might 
be working as a natural control for the sub-
sequent weeks.
Heavy rainfall was found to have negative 
impact on dengue spread, again in line with 
other published researches [20]. Hence, this 
research broadly reaffirmed that climatic fac-
tors indeed impact dengue cases and with 
varied lags. However, most of the other re-
searchers used lags up to 2 months (8 weeks) 
whereas the lags in this study spanned up to 
6 months. Thus, some of the findings were 
new (e.g. negative impact of 23-24 weeks’ pri-

or temperature) and could not be validated 
against any published results. These new fea-
tures should be studied for other locations to 
assess their incremental impact on prediction 
performances.
This study has indicated that climate change 
has a positive correlation with the inciden-
ce of dengue fever. This is supported by the 
World Health Organization (WHO) claims 
that changes in infectious disease transmis-
sion patterns are a likely major consequence 
of climate change [35]. Therefore, there is a 
need to study the possible underlying contri-
buting factors and their relationships through 
the development of complex integrated mo-
dels, in order to predict health outcomes and 
take the necessary preventive actions. This can 
help achieve one of the Sustainable Develop-
ment Goals by WHO to tackle infectious 
diseases that are brought about by human-in-
duced climate changes [36, 37]. 
Finally, the proposed Covariate Pattern-Ma-
tching methodology showed promising results 
in capturing the short-term (weekly) changes 
in dengue cases. Training period performance 
for this approach was stronger than a traditio-
nal AR (1) model. The same methodology is 
readily generalizable to any time series based 
prediction problem that is expected to have 
an auto-regressive property.  
Finally, an ensemble approach was found to 
provide stronger results than each individual 
candidate model. Applying different model-
ling approaches to introduce diversity in mo-
del predictions seemed to be the key driver 
for this. Empirically, the MAD stood 4.26 
points (25.81 vs. 21.55) lower than the ben-
chmark prediction on this dataset.

Future research
There are three key areas where future rese-
arch on this prediction problem should be 
pursued. First is to gather more information 
about the environment and response systems, 
along with the climatic variables. Socio-en-
vironmental factors [20] and policy-driven 
healthcare response systems [33, 38] were 
found to contain useful information about 
potential dengue spreads. This is reasonable 
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because a locality with a strong public health 
control system (e.g. regular fumigation, waste 
water disposal) is expected to have lower den-
gue cases due to such preventive measures. 
Introduction of these variables can carry si-
gnificant information about future outbreaks 
along with the climatic variables used in this 
study [39].
Secondly, the approaches exploited the linear 
relationships using different regression tech-
niques. Application of more complex non-li-
near techniques such as Neural Networks, 
Random Forests, and Support Vector Ma-
chines can help model the latent non-linear 

relationships for improved performance. A 
caution would be to control for overfitting 
the training data, which was found to be a 
practical concern from an initial application 
of these techniques on this data.
Finally, the proposed Covariate Pattern-Ma-
tching is still a naïve approach. This methodo-
logy can be improved further, using options 
such as weighted averages or through va-
riables selection based on similarities. Future 
studies should explore these and prove gene-
ralizability of this approach by applying it on 
other forecasting problems.
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