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Abstract 
Introduction: The dynamics of the COVID-19 pandemic alternated periods of high incidence (waves) 

with others of low incidence, making it difficult to separate short- and long-run relationship between 

the number of COVID-19 cases diagnosed and the demand for hospital beds. The aim of this study 

was to model the risk of hospitalization of diagnosed cases during all the periods of the COVID-19 

pandemic.  

Methods: Time series techniques were applied to evaluate the short- and long-run relationship 

between daily number of COVID-19 cases diagnosed and daily number hospital admissions. 

Drawing on daily Spanish data from 11 May 2020 to 20 March 2022, an error correction model that 

introduces a short-run mechanism was applied to adjust transitory disequilibrium in the long term. 

The impact of vaccination on the need for in-patient care were assessed. To examine changes during 

different life stages, the same analysis was performed by age group.  

Results: Dynamics between the number of positive cases and demand for hospital beds tended to the 

equilibrium in the long run, with 9% of any deviation being corrected after one period. Individuals 

aged between 50 and 69 benefited most from the mass vaccination policy, while vaccination proved 

to be less effective for people aged over 80.  

Discussion: Models discriminating between the short- and long-run dynamics provide health 

planners with a valuable demand forecasting tool which should be useful for developing both 

structural programs and emergency interventions. 

 
Take-home message: The number of diagnosed CODID-19 cases and daily hospitalizations trended 

toward long-term equilibrium, with transitory disequilibriums corrected in less than a month. Our 

dynamic modeling approach that distinghes between long- and short-run dynamics is a valuable 

instrument to planning hospital resources in epidemics with high-incidence waves.  
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INTRODUCTION 

The SARS-CoV-2 pandemic marked a turning point in health planning worldwide. The limited 

capacity of healthcare and hospital resources and the unforeseen levels of demand resulted in 

situations bordering on collapse at the most critical moments, forcing healthcare services to increase 

the availability of hospital beds without their being able to implement correct processes of planning 

[1,2]. In response to these unprecedented circumstances, the scientific literature has hastened to 

provide health planners with methods for predicting hospital demand [3]. Other authors have 

studied how the hospital care required by patients with COVID-19 impacted the number of 

admissions for other pathologies [4,5].  

The dynamics of the COVID-19 pandemic alternated periods of high incidence with others of 

low incidence [6], making it difficult to separate short- and long-run relationship between the number 

of cases diagnosed and the demand for hospital beds. Given that the number of diagnosed cases of 

COVID-19 and the number of hospital admissions exhibit a common stochastic trend, then an Error 

Correction Model (ECM) may be applied to describe the dynamic behaviour of these two time-series. 

The ECM model links the long-run equilibrium between the positive cases and hospital admissions 

jointly with the short-run adjustment mechanism that describes how the relationship reacts to 

stochastic fluctuations. Some studies have used ECM to measure the impact of the spread of SARS-

CoV-2 on the healthcare system [7-9]. Nguyen et al. [10] drew on data from the metropolitan area of 

Charlotte (United States) to estimate a vector ECM for studying the relationship between the daily 

infection incidence and the aggregate number of hospital beds occupied by SARS-CoV-2 patients, 

while Mills [11] explored the changing relationship between infections, hospital admissions and 

deaths using data from England. 

The aim of this article is to determine the short-long relationship between the number of COVID-

19 cases detected in Spain and the number of hospital admissions due to the virus. An ECM is applied 

to estimate the long-term equilibrium between the number of diagnosed cases and the number of 

hospital admissions jointly with the short-run adjustment mechanism to stochastic fluctuations in the 

incidence of the disease. We evaluate the potential impact on the long-relationship of the vaccination 

policy to acquire immunity from SARS-CoV-2, and the effect of the population immunity to protect 

from risk of hospitalization with the presence of a new SARS-CoV-2 (Omicron) variant [12]. Finally, 

the analysis is carried out by different age groups to examine whether there are any differences of 

note in the relationship between the incidence of the disease during different life stages. 

METHODS 

Time-series data 

 Two free-access datasets from official organizations are used in this study. The daily number 

of detected cases and hospital admissions are obtained from Spain’s National Epidemiology Centre 

(https://cnecovid.isciii.es). Positive cases are registered by date of diagnosis and hospitalizations by 

date of admission. Information is disaggregated by age intervals. The vaccination program was 

initiated in Spain on 27 December 2020. The percentage of the population fully vaccinated against 

COVID-19 is obtained from the weekly reporting data of the number of doses administered by age 

groups provided by the European Centre for Disease Prevention and Control 

(https://opendata.ecdc.europa.eu/). Our series covers the time period from 11 May 2020 to 20 March 

2022.  

 Our preliminary analysis of the series revealed that the number of positive cases and hospital 

admissions presented a multiplicative weekly seasonality with cases being underreported at 

weekends. A log transformation was applied to both time series and the seasonal effect was adjusted 

using the Loess method [13]. Weekly vaccination information was converted to a daily time series 

assuming that the same number of doses was administered daily throughout the week. Figure 1 plots 

the positive cases, hospital admissions and the percentage of population fully vaccinated against 

COVID-19. For comparison purposes, positive cases and hospital admissions are shown on a 0-100 

scale in Figure 1. 



J Health Soc Sci 2024, 9, 1, 144-154. Doi: 10.19204/2024/RSKF7  

146 

 

 

 

Figure 1. Time series* for COVID-19 detected positives, hospital admissions and percentage of 

population fully vaccinated in Spain for the period from 11 May 2020 to 20 March 2022.  

 
 

Note: * For comparison purposes, positive cases and hospital admissions were transformed on a 

standardized scale from 0 to 100. 

 

Short- and long-run relationships 

The ECM model can link the long-run equilibrium between two time-series jointly with the 

short-run adjustment mechanism that describes how the relationship reacts to stochastic fluctuations. 

The long-run equilibrium relationship between positive cases and number of hospitalizations is 

represented by the cointegration equation as follows: 

 

𝑦𝑡 = 𝑏0 + 𝑏1𝑥t + 𝑏2𝑥𝑡 𝐼𝑖𝑚𝑚𝑢𝑛  + 𝑏3𝑧𝑡 + 𝑒𝑐𝑡𝑡  (1) 
 

where 𝑦𝑡  corresponds to the logarithm of new hospital admissions on day t and 𝑥𝑡 is the 

logarithm of the number of daily positive COVID-19 cases and t=1,…,T, where T=679, given that this 

is the number of days in the period under study. The constant term is 𝑏0 and 𝑧𝑡 indicates the 

percentage of fully vaccinated population at time t. To analyse the effect of the population immunity 

to protect from risk of hospitalization with the presence of the Omicron variant, the dummy variable 

𝐼𝑖𝑚𝑚𝑢𝑛 takes a value of 1 if t occurs on or after 29 November 2021 (t ≥ 112), the earliest date from which 

the Omicron variant was detected in Spain, and zero otherwise. Population immunity occurs when 

a large portion of individuals has acquired immunity because they have recovered from the 

disease or have been vaccinated against the disease. When the Omicron variant appeared in Spain, 

almost 70% of the total population was fully vaccinated, and this percentage rose to more than 90% 

of population over 50 years of age. Therefore, it is reasonable to assume that, at that time, there was 

population immunity against previous variants of SARS-CoV-2. Finally, the error correction term 

(𝑒𝑐𝑡) captures the regression residuals.  

If the residuals in (1) are stationary, the variables are cointegrated [14]. An ECM can then be 

specified to analyse the short-run adjustment mechanism and the long-run equilibrium between 

these variables as follows [15,16]: 

∆𝑦𝑡 = 𝑐 + ∑ 𝜓𝑖∆𝑦𝑡−𝑖

𝑘

𝑖=1

+ ∑ 𝑤𝑗∆𝑥𝑡−𝑗

𝑞

𝑗=0

+ 𝛾 · 𝑒𝑐𝑡𝑡−1 + 𝜀𝑡 (2) 
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In our case, the first difference of log hospital admissions (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1) is regressed on the 

lagged error correction term from (1), k-lagged values of the same variable and current and q-lagged 

values of the log hospital admissions, all in differences. The optimal numbers for k and q are 

determined when estimating the model. Coefficients 𝜓𝑖  and 𝑤𝑗  measure short-run reactions of the 

dependent variable with its previous changes and with changes in the explanatory variables, 

respectively. The intercept included in the regression is c, while 𝛾 corresponds to the error correction 

rate that indicates the speed of adjustment in the short term when there is a disequilibrium in the 

long term, i.e.,  𝑒𝑐𝑡𝑡−1 ≠ 0 [17]. Finally, 𝜀𝑡 is the error term which is normally distributed with zero 

mean and variance  𝜎𝑡
2, 𝜀𝑡~𝑁(0, 𝜎𝑡

2). A generalized autoregressive conditional heteroscedasticity 

(GARCH) [18] model specification is used to deal with the presence of heteroscedasticity. A 

GARCH(1,1) is proposed here to model the variance as 𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜎𝑡−1
2 . To conclude, it 

should be borne in mind that an autoregressive distributed lag model specification could be obtained 

from (2) by rearranging the variables [19]. 

RESULTS 

The statistical analysis was conducted using R statistical software, version 4.1.1. [20,21]. The first 

step in this analysis involved examining the order of integration of the series, which is usually made 

using the augmented Dickey-Fuller (ADF) test [14]. The values of the ADF test statistics for the 

logarithm of hospital admissions yt and the logarithm of positive cases xt were -0.031 and 0.453, 

respectively. As a result, the null hypothesis, which states the presence of a unit root, was not rejected 

at a significance level of 5%. However, the null hypothesis was rejected when Δxt and Δyt were 

analysed, indicating that the first difference of the time series were stationary (ADF(Δyt)=-23.094 and 

ADF(Δxt)=-23.660). Therefore, both variables xt and yt are integrated of order one. 

Log-run equilibrium 

The cointegration equation expressed in (1) is estimated using fully modified least squares [22]. 

Table 1 reports the coefficient estimates and the ADF test performed on the cointegration residuals. 

The results show that the residuals are integrated of order zero (stationary), thus cointegration exists.  

 

Table 1. Estimation of the cointegrating equation (long-run relationship) between time series of 

positive COVID-19 cases and hospital admissions, and ADF test on residuals. 

Coefficient Description Estimate 95% Conf. Int. 

b0 Intercept -1.228** [-1.796, -0.660] 

b1 Positive cases (log)  0.855** [0.789, 0.920] 

b2 Population immunity -0.076** [-0.102, -0.049] 

b3 % vaccinated population -0.008** [-0.011, -0.006] 

    

ADF ADF test on ect -5.413**  

Note: ** p-value < 0.01. 

 

The value eb0 corresponds to the proportion of corrected positive cases, e(𝑏1+𝑏2𝐼𝑖𝑚𝑚𝑢𝑛)𝑥𝑡+𝑏3𝑧t , 

estimated as being admitted to hospital. Thus, 29.3% of the corrected number of positive cases is 

estimated as being admitted to hospital. The long-run coefficient of the (log) number of positive cases 

is greater than 0, meaning that an increase in the number of COVID-19 cases diagnosed implies an 

increase in the number of hospitalizations. The coefficient associated with the population immunity 

presents a significant negative sign, suggesting that after 29 November 2021 an increase in the 

number of positive cases is associated with a smaller increase in the number of patients requiring 

hospitalization. Here, we find that the number of positive cases in the original scale (𝑒𝑥𝑡) has to be 

raised to a power and later multiplied by 0.293 to compute the number of hospitalizations. The power 

value ranged from 0.885 before 29 November 2021 to 0.779 (=0.855-0.076) after this date. The fact that 

both values are lower than one means that any increase in the number of positive cases generates a 

lower increase in the number of hospitalizations, with this reduction being greater as of November 
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29. Additionally, the long-run coefficient for the percentage of fully vaccinated is negative, which 

indicates that the greater the number of people with full vaccination status, the fewer the number of 

people that have to be hospitalized. Specifically, a 1% increase in the fully vaccinated population 

reduced the risk of hospitalization approximately by 0.8% (i.e., 𝑒−0.008 − 1).  

Error correction model estimation 

The estimated coefficients of the ECM corrected for heteroscedasticity through a GARCH(1,1) 

specification are shown in Table 2. The selection of the order (k,q) was based on the Bayesian 

information criterion (BIC) [23]. The model specification with the lowest BIC had 11 lags on the 

difference of log hospital admissions and 1 lag on the difference of log positive cases.  

 

Table 2. Error correction model (short-run relationship) between time series of positive COVID-19 

cases and hospital admissions (in log scale). 

Coefficient Description Estimate     95% Conf. Int. 

c Intercept -0.003 [-0.011, 0.006] 

𝜓1 1-lagged hospitalization difference  -0.591** [-0.674, -0.509] 

𝜓2 2-lagged hospitalization difference -0.298** [-0.394, -0.202] 

𝜓3 3-lagged hospitalization difference -0.074 [-0.171, 0.022] 

𝜓4 4-lagged hospitalization difference 0.009 [-0.084, 0.102] 

𝜓5 5-lagged hospitalization difference 0.115* [0.026, 0.204] 

𝜓6 6-lagged hospitalization difference 0.160** [0.071, 0.248] 

𝜓7 7-lagged hospitalization difference 0.349** [0.263, 0.435] 

𝜓8 8-lagged hospitalization difference 0.232** [0.140, 0.324] 

𝜓9 9-lagged hospitalization difference 0.183** [0.089, 0.276] 

𝜓10 10-lagged hospitalization difference 0.179** [0.087, 0.270] 

𝜓11 11-lagged hospitalizations difference 0.105** [0.029, 0.180] 

w0 Difference of positive cases  0.304** [0.267, 0.341] 

w1 1-lagged difference of positive cases -0.047** [-0.082, -0.012] 

Error correction  

𝛾 Error correction term -0.088** [-0.109, -0.066] 

Variance equation  

𝛼0 Variance equation intercept 1.6·10-4** [3.8·10-5, 2.8·10-4] 

𝛼1 Variance equation error term 0.110** [0.065, 0.155] 

𝛼2 Variance equation variance term 0.866** [0.820, 0.913] 

AIC AIC of the ECM -2.169  

BIC BIC of the ECM -2.049  

HC HQ of the ECM -2.123  

R2 ECM coefficient of determination 0.425  

Note: ** p-value < 0.01; * p-value < 0.05. 

 

Table 2 shows that the coefficient associated with the error correction term is significant and 

takes a value between -1 and 0, which are the necessary conditions for stating that the dynamics 

between the analysed variables tend to equilibrium. Specifically, the estimated coefficient reflects the 

speed of adjustment in case of long-run disequilibrium. Its value suggests that, when a 

disequilibrium in the long-run relationship is observed, around 9% of any deviation (gap) dissipates 

after one period. That means, a gap in the long-run relationship between positives and 

hospitalizations is expected to be reduced by 50% in less than eight days. 

Model diagnostics 

To obtain both consistent and efficient estimates, the residuals in (2) should follow an 

uncorrelated white noise process. Figure 2 shows the partial autocorrelations of the model (2) 
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residuals. The rejection limits of the null hypothesis stating that the residuals follow a white noise 

process were computed under the independent and identically distributed (IID) and GARCH 

assumptions [24]. The partial autocorrelations were not-significant under the GARCH hypothesis, so 

the null hypothesis was not rejected. The assumption of normal conditional distribution of residuals 

was not rejected at the 5% significance level based on the adjusted Pearson goodness-of-fit test [25]. 

No serial dependence for the residuals of the mean process was found according to the Ljung-Box 

test. Finally, time-varying phenomena in the residuals of the variance process were not detected and 

leverage effects were not found [26]. Hence, it can be concluded that the dynamics of the variance 

process were correctly captured and there was no evidence of misspecification. 

 

Figure 2. Partial autocorrelation function of residuals and rejection limits of white noise process 

under IID and GARCH hypotheses. 

 

Age groups 

The ECM was further calibrated for four different age groups. The age intervals considered are 

20–49, 50–69, 70–79 and 80 years or more. The results of the estimation of the ECM and the 

cointegration equation for each age group are shown in Table 3. The selected models now include 

two/three lags of the difference of (log) hospitalizations and zero/one lag of the difference of (log) 

positive cases.  

 

Table 3. Error correction model for positive cases and hospital admissions (in log scale), and long-

run coefficients by age groups. 

Coeff. Description Estimates 

  20-49 50-69 70-79 80+ 

Long-run coefficients 

b0 Intercept -1.970** -2.198** -1.372** -1.004** 

b1 Positive cases (log) 0.829** 1.005** 1.005** 0.998** 

b2 Population immunity -0.114** -0.146** -0.133** -0.117** 

b3 % vaccinated population -0.005** -0.005** -0.004** -0.001* 

Short-run coefficients  

c Intercept -0.001 - - 0.001 

𝜓1 1-lagged hospitalization difference -0.665** -0.637** -0.776** -0.548** 

𝜓2 2-lagged hospitalization difference -0.316** -0.266** -0.433** -0.234** 

𝜓3 3-lagged hospitalization difference - - -0.162** - 
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w0 Difference of positive cases 0.301** 0.365** 0.410** 0.314** 

w1 1-lagged difference of positive cases - - - 0.091** 

Error correction 

𝛾 Error correction term -0.076** -0.072** -0.112** -0.112** 

Variance equation 

𝛼0 Variance equation intercept 4·10-4* 5·10-4** 4·10-4* 2·10-4* 

𝛼1 Variance equation error term 0.126** 0.110** 0.126** 0.121** 

𝛼2 Variance equation variance term 0.861** 0.866** 0.868** 0.878** 

AIC AIC of the ECM -0.858 -1.126 -0.717 -1.008 

BIC BIC of the ECM -0.804 -1.072 -0.656 -0.948 

HQ HQ of the ECM -0.837 -1.105 -0.693 -0.985 

R2 ECM coefficient of determination 0.436 0.409 0.478 0.290 

Note: ** significance level at 1%; * significance level at 5%. 

 

A number of differences by age group in the long-run relationship and the speed of adjustment 

in the short-run are worth highlighting. For example, in the case of the long-run equilibrium 

coefficients, the intercept estimates present higher values for the older age groups. Thus, the value 

corresponding to the proportion of corrected positive cases estimated as being admitted to hospital, 

𝑒𝑏0 , is higher for older ages. Additionally, the coefficients 𝑏1, associated with the correction of positive 

cases, indicate that an increase in the number of cases is associated with an increase in the number of 

hospitalizations; however, this increment is smaller in the case of the youngest age group. This impact 

on the number of hospitalizations falls after 29 November 2021, as the coefficients 𝑏2, associated with 

the population immunity, are significant and negative in all age groups, most notably in the 50–69 

age group.  It is also evident that the beneficial effects of an increase in the percentage of fully 

vaccinated 𝑏3 on falling numbers of hospitalizations holds for all ages, albeit that this effect decreases 

as people get older. 

Additionally, all the error correction term coefficients are significant and negative. The number 

of days required to close the gap between current and equilibrium hospital admissions for the 

different group ages are shown in Figure 3. The number of days required to correct a long-run 

disequilibrium are computed using the approach devised by Galeotti et al. [27]. We find that 

adjustment to the long-run equilibrium is more rapid in the case of the two oldest age groups. For 

example, reducing the temporary gap by 50% requires 9.2 days for the 20-49 age group, 9.6 days for 

the 50-69 age groups, and 6.2 days for the two older age groups. 

 

Figure 3. Speed of adjustment to equilibrium in days.  
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These results obtained after disaggregating by age should, however, be treated with some 

caution, given that residual autocorrelation that might affect the efficiency of estimates was detected 

[24]. In all likelihood, this effect is attributable to the low number of lagged regressors selected based 

on the best goodness-of-fit performance of the models.  

DISCUSSION 

This article has examined the short-long relationship between the number of COVID-19 cases 

detected in Spain and the number of hospital admissions due to the virus. The long-run relationship 

followed a multiplicative model (additive after logarithmic transformations), in line with Santolino 

et al. [3] who linked hospital admissions and nine-period-lagged positive cases. The dynamics of the 

relationship between our time series proved to be stable and tended to long-run equilibrium. 

Alternative designs of the long-run equilibrium equation were investigated to capture other forms of 

relationship between the number of hospitalizations and the number of positives detected and the 

vaccination status, but a poorer performance was observed in terms of goodness-of-fit in all cases.  

The behaviour of the pandemic indicators was not steady over time as periods of high incidence 

alternated with others of low incidence. We detected two distinct factors impacting the long-run 

equilibrium between the number of cases and the number of hospitalizations: that is, vaccination and 

population immunity with the presence of a new SARS-CoV-2 variant (Omicron). The effectiveness 

of COVID-19 vaccines has been extensively studied [28-32]. Previous studies have shown that 

vaccination reduces the risk of hospitalization [33,34]. Our research also shows that hospital pressure 

decreased as the vaccination program was progressively rolled out. The Omicron variant appeared 

in late 2021 and rapidly replaced Delta as the dominant variant globally due to increased immune 

evasion [35,36]. Some studies suggest that this variant presents a lower risk of hospitalization and 

death than earlier SARS-CoV-2 variants of the virus [36]. In the same line, we found evidence in this 

study that population immunity was effective to reduce the risk of hospitalization of detected 

positives after the appearance of this variant.  

COVID-19 hospitalization rates are known to be exponentially associated with age [37]. Our 

study showed that the percentage of individuals with a positive diagnosis requiring hospitalization 

was higher among people who were fifty years of age or older. Population immunity with the 

appearance of the Omicron variance was effective to protect from risk of hospitalization in all groups, 

but particularly among the late middle-aged. Sievers et al. [38], likewise, worked with different age 

groups and found the reduction of the hospitalization risk to be apparently greater in the early 

middle-aged. Finally, in line with other studies [39,40], our results showed that vaccination proved 

to be less effective for older people. 

Our study has relevant implications for health planners. The different waves of the coronavirus 

have produced fluctuating and unpredictable levels of pressure on hospitals [41,42]. The dynamic 

model proposed here seeks to be a useful health planning tool that can forecast the amount of hospital 

resources required at any specific moment based on the prevailing incidence of the disease, the 

virulence of the dominant variant, and the proportion of the population with full vaccination status. 

Our methodology allows health planners to predict the expected number of hospitalizations based 

on the number of observed positives and the percentage of vaccinated population. Thus, health 

planners have a mechanism to help them determine the number of hospital beds needed at any point 

in time. By differentiating between long- and short-run effects, in case of deviations of the long-term 

relationship between positives and hospitalizations, health planners may know in advance the 

expected time required to return to the long-run equilibrium. Deviations of observed hospitalizations 

from expected hospitalizations can be positive (higher) or negative (lower). In both cases, health 

planners could forecast the variations in the hospital admissions during this transition period to long-

term equilibrium.   

Policy implications are derived from our study. We evaluate the impact of mass vaccination 

policy on reducing the long-term relationship between positives and hospitalizations for the total 

population and by age groups. By doing so, valuable information is provided to policymakers for the 

design of strategies of priority vaccination. Furthermore, the dynamic modelling approach followed 
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in this study may be extended in at least two ways. First, other health policies could be evaluated 

with this methodology in terms of their long- and short-term impact on the balance between 

coronavirus positives and hospitalizations. Second, our modelling approach is not limited to the 

coronavirus pandemic, and could easily be adapted to apply to future pandemics to anticipate the 

demand for hospital beds and to assess the long- and short-term impact of health policies on reducing 

hospital pressure. To summarise, our methodology furnishes healthcare decision-makers with a dual 

mechanism that facilitates their evaluations of the impact of (i) the structural health policies aimed at 

addressing the long-run relationship between positive cases and the demand for hospital beds, and 

(ii) emergency interventions with a short-run impact on the demand for hospital admissions. 

This study is not exempt from limitations, not least the fact that access to reliable data is essential 

for developing an accurate, realistic model. As Hyafil and Moriña [43] stress, the number of tests 

performed has a direct effect on the number of positive cases detected, which suggests there are likely 

to have been undiagnosed cases not considered in this study. The degree of underreporting cases 

varies over time and between countries [44]. Additionally, here we have had to use weekly 

vaccination information to estimate daily rates of inoculation, as complete daily data on the number 

of individuals with full vaccination status were unavailable. Finally, risk factors, such as gender, were 

not analysed as they were not registered by the databases [45].  

CONCLUSION 

The application of the error correction model introduces a short-run mechanism to adjust 

transitory disequilibrium in the long-run relationship between the number of COVID-19 cases 

diagnosed and the consequent demand for hospital beds. Results revealed that the dynamics between 

the number of positive cases and demand for hospital beds tended to the equilibrium in the long run, 

with 9% of any deviation being corrected after one period. The dynamic modelling approach 

proposed herein should represent a valuable instrument for planning hospital resources in any 

pathology that necessitates in-patient care, especially epidemics with waves of contagion. Based on 

the cases detected in primary care, it would be possible to predict the number of hospital admissions, 

thus allowing health planners to anticipate both the long- and short-run impact on hospital pressure 

created by any disease. 
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