A scoping review examining the relationship between green tea and skin cancers

Ram LAKHAN¹, Louisa SUMMERS², Olugbemiga EKUNDAYO³, Jedidiah RADOSEVICH⁴a, Sierra TURNER⁴b, Sangyal DORJEE⁴c, Vinayak K. NAHAR⁵, Manoj SHARMA⁶

Affiliations:
¹ Dr.PH, Assistant Professor, Department of Health and Human Performance, Berea College, Berea, USA
² Ph.D., Professor, Department of Health and Human Performance, Berea College, Berea, USA
³ MD, DrPH, Associate Professor, School of Allied Health, College of Health and Human Services, Northern Kentucky University, Highland Heights, USA
⁴ Students, a. BA, Technology and Applied Design (graduated), b. BA, Health Studies (graduated), c. Junior, Biology major (Junior), Berea College, Berea, USA
⁵ MD, PhD, Assistant Professor, Department of Dermatology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA and Department of Preventive Medicine, School of Medicine/John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
⁶ MBBS, PhD, Professor, Department of Behavioral and Environmental Health, School of Public Health, Jackson State University, USA

Corresponding author:
Dr. Ram Lakhan, Assistant Professor, Department of Health and Human Performance, CPO 2187, Seabury Building, Berea College, Berea, KY, USA. Office phone: (859) 985-3573, Fax: (859) 985-3919, E-mail: ramlakhan15@gmail.com

Abstract

Introduction: Skin cancers are among the most commonly diagnosed cancers in the US and are becoming a major public health problem. Polyphenols particularly, (-)-epigallocatechin-3-gallate (EGCG) found in green tea has been shown to have anti-carcinogenic properties in animal models. Chemo-preventative role of green tea has been studied through epidemiological studies in several cancers such as breast, lung, oral cavity and others. The results have been mixed.

Purpose: The purpose of this study was to conduct a scoping review to examine the relationship between green tea and skin cancers and discuss its implications for humans.

Methods: Literature searches using the keywords “green tea” and skin cancer” were conducted in MEDLINE (PubMed), CINAHL, and Google Scholar. The inclusion criteria were: (1) articles published in the past approximately ten years; (2) in the English language; (3) published in peer-reviewed journals in the above databases; and (4) all accounts of descriptive and epidemiological or evaluation studies. Excluded were articles published before 2008, published in grey literature and non-peer-reviewed journals.

Results: In the literature, systemic and topical applications of green tea polyphenols have shown to have mixed effects against the formation and development of skin cancers in animals. Particularly, EGCG has been found as a contributing factor to inhibit cell invasion, angiogenesis, and metastasis in skin cancer.

Discussion: Use of green tea and its extracts may offer promising implications for use in humans about prevention and retarding the progress of skin cancers but at present, the data are very limited. Large scale randomized controlled trials on the efficacy of green tea and its extracts are required.

KEY WORDS: Green tea; melanoma; non-melanoma skin cancer; review; skin cancer.
Riassunto

Introduzione: Questa è uno studio sugli effetti diretti e indiretti delle esperienze di discriminazione sull’utilizzo dell’assistenza sanitaria tra i giovani studenti universitari.

Metodi: Centottantacinque studenti hanno completato un’indagine online. Le misure includevano esperienze di discriminazione, aspettative di risultato, autoefficacia, atteggiamenti e variabili demografiche. Le relazioni testate sono state informate dal modello comportamentale di Andersen sull’uso dei servizi sanitari, che è stato modificato in quanto semplifica eccessivamente il ruolo dell’etnia considerata come predittore. Sono state condotte analisi di regressione e di mediazione.

Risultati: L’autoefficacia nel comunicare con i medici è stata un fattore predittivo diretto significativo dell’utilizzo dell’assistenza sanitaria (t = 2.965, P = .003), sebbene le esperienze di discriminazione non lo fossero. È stato inoltre riscontrato che gli effetti della discriminazione sull’utilizzo dell’assistenza sanitaria sono mediati dall’autoefficacia per comunicare con i medici (95% CI [-.0907, -.0025]).

Conclusioni: Questi risultati hanno fornito supporto per l’inclusione delle variabili psicosociali (ovvero l’autoefficacia) nel modello di Andersen per aumentare il suo potere esplicativo.

TAKE-HOME MESSAGE

The findings of this literature review suggest that green tea consumption and topical application may be helpful in lowering skin cancer in humans.

Competing interests - none declared.

Copyright © 2019 Ram Lakhan et al. Edizioni FS Publishers
This is an open access article distributed under the Creative Commons Attribution (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. See http://www.creativecommons.org/licenses/by/4.0/.

DOI 10.19204/2019/scpn5

Received: 13/08/2019 Accepted: 18/09/2019 Published Online: 30/09/2019
INTRODUCTION

Skin cancer is considered a significant public health issue. Skin cancer rates have doubled in the USA from 1982 to 2011 [1, 2]. Worldwide, the rates of skin cancers have been on an inclining trend [3]. Non-melanoma skin cancers, including basal cell carcinomas (BCC) and squamous cell carcinomas (SCC), were found to be the most commonly diagnosed of all forms of cancer, with over 3 million Americans diagnosed each year. Both types of skin cancers are found to be treatable if detected early. Melanoma, the most fatal form of skin cancer, is less common but responsible for the majority of skin cancer deaths. The American Cancer Society has estimated that in the United States in 2019 roughly 96,480 new melanomas cases will be diagnosed in 2019 and roughly 7,230 people will die of melanoma [5].

Green tea has been considered a health beneficiary beverage. Leaves and buds of Camellia sinensis plant which have not undergone a withering and oxidation process are considered as green tea. Literature has shown multiple health benefits of green tea. Its use in both forms, oral consumption and topical applications, has been reported beneficial in skin conditions. Green tea polyphenols (GTPs) and Catechin are two naturally available elements in green tea that have been studied for their effects on multiple diseases. Green tea usages in drinking and topical form have been reported to be beneficial in protecting skin from skin cancer. Its polyphenols protect skin from several damaging effects of UV-induced sunburn response, UV-induced immunosuppression, and photoaging [6]. Polyphenols exhibit their photoprotective effect by various cellular, molecular, and biochemical mechanisms in vitro and in vivo system [6]. In a review of animal-based laboratory studies, green tea polyphenols were found effective in protecting skin from ultra-violet radiation-induced inflammation and in DNA damage [7]. In another review, it was found that GTPs in drinking water as well as in the topical application of (-)-epigallocatechin-3-gallate (EGCG) acts in a variety of ways and prevent UVB-induced skin tumor development in mice. Mainly six mechanisms which are regulated by GTPs and EGCG at the molecular level play an important role in the prevention of skin cancer. Katiyar et al (2007) have reported in their review that these chemicals present in green tea protect and prevent skin cancer by initiating immunoregulatory cytokine interleukin (IL) 12; IL-12-dependent DNA repair following nucleotide excision repair mechanism; inhibition of UV-induced immunosuppression through IL-12-dependent DNA repair; inhibition of angiogenic factors; and stimulation of cytotoxic T cells in a tumor microenvironment [8]. Similarly, several pathways of GTPs, EGCG in inhibiting skin cancer were reported in animal and human cell studies [9]. Butt and Sultan have reported that GTPs of green tea have chemoprophylactic properties which are claimed to have the potential to work against several forms of cancer [10]. Laboratory studies conducted on mice have been found to be somewhat promising in demonstrating a preventive effect on skin cancers [11]. Consumption or topical use of green tea may similarly be useful in preventing skin cancer in humans. A catechin, gallic acid also known as epigallocatechin-3-gallate (EGCG), and polyphenols, theaflavins (TF), thearubigins (TR), epicatechin, epicatechin-3-gallate, and epigallocatechin have been studied for skin cancer [12].

Objective of the study

This study conducted a scoping review to examine the relationship between green tea and skin cancers and discuss its potential implications for humans.

METHODS

An extensive literature search was performed using the keywords “green tea” and “skin cancer” in the following databases: MEDLINE (PubMed), CINAHL, and Google Scholar. Studies with all methodological approaches conducted on animals and humans in the past approximately 10 years from 2008 to May 2019 were included. We customized our
search by selecting a year in all databases. We conducted the literature search in May 2019. We considered the following inclusion criteria: (1) articles published in the English language; (2) published in peer-reviewed journals; and (3) descriptive, epidemiological or evaluation studies. Articles published in other than the English language, published before 2008, review articles, non-empirical descriptive articles, and those not in peer-reviewed journals were excluded. Based on keywords, a total of 346 papers were found in the databases. We found 192 studies in MEDLINE (PubMed), 02 in CINAHL, and 152 in Google Scholar. After careful reading of titles and excluding papers which appeared in the databases in our search, 56 papers were found relevant and their abstracts were read. In vitro and in vivo laboratory studies in mice; in silico; in vitro, in vivo, mixed in vitro and in vivo with human cells; observational studies in humans including case-control and cohort; and double randomized studies with humans were included in the review. A total of 37 studies were deemed eligible to be included in our analysis (Figure 1). Descriptive analysis was performed to determine the distribution of studies selected.

RESULTS

Out of the total of 37 studies, 25 studies suggested some preventive or inhibitory role, two moderate to protective effect, and four contented that green tea may be effective in protecting against skin cancer. Looking at the difference between studies conducted on mice and humans, all studies in mice indicated either preventive or protective effect while in humans all laboratory and only one case-control study demonstrated preventive to a protective effect for skin cancer. Of the total number of studies included in this review, 24.02% studies conducted in mice, 40.0% in the laboratory, and 10.81% clinical and observational studies in humans have shown some preventive, protective, and inhibitory responses against the various forms of skin cancers. All studies conducted in mice, 100% showed preventive to protective effects while in humans 60% demonstrated such effects (Tables 1 and 2). Studies, included in this review are presented in a following sequence and chronological order: in vitro mice, in vivo mice, in vitro human, in vivo human, in vitro and vivo human, case-control, prospective cohort, and double blind randomized.

Out of total 37 studies, 16 were conducted in the United States, six in India, four in China, three in Japan and UK each, two in Australia, and one in each country including Switzerland, South Africa, and Germany. Total nine laboratory studies came from the United States, and one from each country including India, Japan, South Africa, and Germany. Regarding the mice models, five studies were found from India, two from United States, and one from China, and Australia. One study was in silico in humans [24], two in vitro in mice [13, 14], eight in vitro in humans [25, 26, 27–32], nine in vivo in mice [15–23], five in vivo in humans [33–37], three mixed in vitro and in vivo in humans [38–40], two case-control [41, 42], four cohort [43–46], and three double-blind randomized control studies in humans [47–49] were found.

In the mice models, four studies demonstrated some preventive, protective, and inhibitory response of polyphenols through chemopreventive mechanism [16, 21, 23, 36], against UV-induced skin cancer [17–19, 22], and by inhibiting DNA damage [14, 35]. In the laboratory-based studies, protecting, preventive, and inhibiting response of polyphenols towards skin cancer was found through chemopreventive properties of GTPs in stimulating the cytotoxic T-cells in tumor microenvironment [24, 25, 27, 30, 32–34, 38–40], inhibition of UV-induced immunosuppression through IL-12-dependent DNA repair [35–38], and DNA repair through nucleotide excision repair mechanism [26, 28, 29].

In the observational studies, chemopreventive action was noted in seven studies [31, 41–46], and inhibition of UV-induced immunosuppression through IL-12-dependent DNA repair in three studies [44, 48, 49].
The purpose of this scoping review was to examine the relationship between green tea and its putative effects on the prevention of skin cancer. Overall, the review collectively demonstrated through analysis of various in-vitro, in-vivo laboratory studies in animal models and humans, observational studies (case-control and cohort) and double-blind randomized controlled trials that green tea elements, when consumed as a green tea extract (GTE) in combined form, may lead to some potential protective and preventive effects against skin cancer in humans [34, 38]. Results of this review are consistent that various Polyphenols available in green tea triggers several biochemical, photochemical [50], molecular [51], and epigenetic reaction [52] that inhibits, prevents, and protects skin cancer in mice and human [53]. There are several criteria for establishing causality [54].
Table 2. Reviewed studies and their salient findings \((n = 37) \).

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country of study</th>
<th>Year</th>
<th>Study type</th>
<th>Outcome variables</th>
<th>Findings</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. In vitro Mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Liao et al. 2016 [13]</td>
<td>China</td>
<td>2016</td>
<td>In vitro Mice laboratory study</td>
<td>EGCG-nanoethosomes for human melanoma cells induced in mice</td>
<td>DT-EGCG-nanoethosomes exhibited a significant therapeutic effect, with tumors shrinking, on average, by 31.5% of initial volumes after 14 d treatment.</td>
<td>May have an inhibitory role</td>
</tr>
<tr>
<td>2. Chen et al. [14]</td>
<td>China</td>
<td>2018</td>
<td>In vitro Mice laboratory study</td>
<td>Relationship between tea polyphenol and Toll-like receptor 4 (TLR4)</td>
<td>Tea polyphenol (TP) may inhibit melanoma (B16F10) growth in vivo</td>
<td>May have a preventive role</td>
</tr>
<tr>
<td>B. In vivo Mice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Patel et al. [15]</td>
<td>India</td>
<td>2008</td>
<td>In vivo Mice laboratory study</td>
<td>Antitumor promoting effects and mechanisms of polymeric black tea polyphenols (PBPs 1–5)</td>
<td>Mild protective effects</td>
<td>May have mild protective effects</td>
</tr>
<tr>
<td>4. Roy et al. 2009 [16]</td>
<td>India</td>
<td>2009</td>
<td>In vivo Mice laboratory study</td>
<td>7,12-dimethylbenz[a]anthracene (DMBA) polyphenol on tumorigenesis</td>
<td>May act as a chemopreventive agent against skin cancer.</td>
<td>May have a preventive role</td>
</tr>
<tr>
<td>5. Meenan et al. 2009 [17]</td>
<td>USA</td>
<td>2009</td>
<td>In vivo Mice laboratory study</td>
<td>Effect of polyphenols in drinking water on the molecular mechanism of the inhibitory role</td>
<td>Reduced UVB-induced tumor development</td>
<td>May have an inhibitory role</td>
</tr>
<tr>
<td>6. Katiyar et al. 2010 [18]</td>
<td>USA</td>
<td>2010</td>
<td>In vivo Mice laboratory study</td>
<td>Relationship between GTPs in drinking water (0.1-0.5%, w/v) with UV-induced immunosuppression effect</td>
<td>GTPs showed the property of reacting against photocarcinogenesis.</td>
<td>May have a preventive and an inhibitory role</td>
</tr>
<tr>
<td>7. George et al. 2011 [19]</td>
<td>India</td>
<td>2011</td>
<td>In vivo Mice laboratory study</td>
<td>Chemopreventive effects of resveratrol and black tea polyphenol (BTP) in mouse skin carcinogenesis</td>
<td>Suppress cancer cells may be beneficial against cancer</td>
<td>May have a preventive and an inhibitory role</td>
</tr>
<tr>
<td>8. Kumar et al. 2012 [20]</td>
<td>India</td>
<td>2012</td>
<td>In vivo Mice laboratory study</td>
<td>Effect of Polymeric black tea polyphenols (PBPs) on tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)</td>
<td>Polymeric black tea polyphenols (PBPs) may possess mouse skin anti-tumor-promoting effects.</td>
<td>May have a preventive and an inhibitory role</td>
</tr>
<tr>
<td>9. Ireland et al. 2012 [21]</td>
<td>Australia</td>
<td>2012</td>
<td>In vivo Mice laboratory study</td>
<td>Anticancer effect of Melaleuca alternifolia (tea tree) oil (TTO)</td>
<td>Topical application showed anticancer effect on mice</td>
<td>May have a preventive and an inhibitory role</td>
</tr>
<tr>
<td>11. Subramanian et al. 2014 [23]</td>
<td>India</td>
<td>2014</td>
<td>In vivo Mice laboratory study</td>
<td>Effect of Gallic acid on skin cancer</td>
<td>Topical application of Gallic acid in green tea (GA) inhibited DMBA/Croton oil-induced two-stage skin carcinogenesis in mice.</td>
<td>May have an inhibitory role</td>
</tr>
<tr>
<td>C. In silico Humans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. In vitro Human cells

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country of study</th>
<th>Year</th>
<th>Study type</th>
<th>Outcome variables</th>
<th>Findings</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Halder et al. 2008 [25]</td>
<td>India</td>
<td>2008</td>
<td>In vitro Human Laboratory study</td>
<td>Anticancer effect of Theaflavins (TR) and Thearubigins (TR) Polyphenols of black tea may have preventive effect</td>
<td>May have a preventive effect</td>
<td></td>
</tr>
<tr>
<td>14. Balasubramanian et al. 2009 [26]</td>
<td>USA</td>
<td>2009</td>
<td>In vitro Human Laboratory study</td>
<td>Polyphenols influence in PcG-mediated epigenetic regulatory mechanism</td>
<td>Green tea polyphenols may reduce skin tumor cell survival</td>
<td>May have preventive role</td>
</tr>
<tr>
<td>15. Shen et al. 2009 [27]</td>
<td>China</td>
<td>2009</td>
<td>In vitro human laboratory study</td>
<td>Different doses of Epigallocatechin-3-gallate (EGCG) on melanoma cells</td>
<td>Tumor growth was inhibited</td>
<td></td>
</tr>
<tr>
<td>16. Choudhury et al. 2011 [28]</td>
<td>USA</td>
<td>2011</td>
<td>In vitro Human laboratory study</td>
<td>Impact of (-)-epigallocatechin-3-gallate (EGCG) and 3-deazaneplanocin A (DZNep) on PcG proteins (Ezh2, eed, Suz12, Mel18 and Bmi-1)</td>
<td>Both EGCG and DZNep independently and in combination reduces PcG proteins which inhibits skin cancer</td>
<td>May have inhibitory role</td>
</tr>
<tr>
<td>17. Nandakumar et al. 2011 [29]</td>
<td>USA</td>
<td>2011</td>
<td>In vitro human laboratory study</td>
<td>Epigenetic mechanism of EGCG on cancer</td>
<td>Chemoprevention of skin cancer</td>
<td>May have preventive role</td>
</tr>
<tr>
<td>18. Singh and Katiyar, 2011 [30]</td>
<td>USA</td>
<td>2011</td>
<td>In vitro human laboratory study</td>
<td>Inhibiting role of EGCG on melanoma cell invasion/migration</td>
<td>Green tea Catechin can inhibit melanoma cell invasion/migration</td>
<td>May have inhibitory role</td>
</tr>
<tr>
<td>19. Prasad and Katiyar, 2015 [31]</td>
<td>USA</td>
<td>2015</td>
<td>In vitro human laboratory study</td>
<td>Effect of GTPs Epicatechin on Melanoma cancer cells</td>
<td>Polyphehons found to be playing preventive and suppressor role</td>
<td>May have a preventive and inhibitory role</td>
</tr>
</tbody>
</table>

E. In vivo Humans

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country of study</th>
<th>Year</th>
<th>Study type</th>
<th>Outcome variables</th>
<th>Findings</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Misch et al. 2009 [34]</td>
<td>Switzerland</td>
<td>2009</td>
<td>In vivo Human laboratory study</td>
<td>Low dose topical use of GTE (OM24®) on UVB-induced skin cancer</td>
<td>GTE was found to be photochemopreventive agents.</td>
<td>May have a preventive role</td>
</tr>
<tr>
<td>23. Zhu et al. 2014 [35]</td>
<td>China</td>
<td>2014</td>
<td>In vivo human laboratory study</td>
<td>Epigallocatechin-3-gallate (EGCG) and ionizing radiation</td>
<td>Epigallocatechin-3-gallate (EGCG) shown potential effect in inhibiting skin cancer cells in human in ionizing radiation-related skin cancer</td>
<td>May have an inhibitory role</td>
</tr>
<tr>
<td>24. Balasubramanian et al. 2015 [36]</td>
<td>USA</td>
<td>2015</td>
<td>In vivo human laboratory study</td>
<td>Relationship between (-) Epigallocatechin-3-gallate (EGCG) and Bmi-1</td>
<td>(-) Epigallocatechin-3-gallate (EGCG) reduces Bmi-1, Polycomb group (PeG) protein that has an epigenetic impact in inhibiting skin cancer.</td>
<td>May have an inhibitory role</td>
</tr>
<tr>
<td>25. Magcwebeha et al. 2016 [37]</td>
<td>South Africa</td>
<td>2016</td>
<td>In vivo human laboratory study</td>
<td>Ultraviolet B (UVB) radiation with intracellular interleukin-1α (icIL-1α)</td>
<td>Aqueous extracts of tea inhibit skin cancer by inhibiting UAB radiation with intracellular interleukin-1α (icIL-1α)</td>
<td>May have an inhibitory role</td>
</tr>
</tbody>
</table>

F. In vitro and in vivo mixed Humans

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country of study</th>
<th>Year</th>
<th>Study type</th>
<th>Outcome variables</th>
<th>Findings</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Schwarz et al. 2008 [38]</td>
<td>Germany</td>
<td>2008</td>
<td>In vitro and vivo Human laboratory study</td>
<td>GTP effect through intracellular interleukin (IL-12) mediation on Ultraviolet B (UVB) radiation-induced skin cancer</td>
<td>Green tea extract (GTP) has protective effects</td>
<td>May have protective effects</td>
</tr>
</tbody>
</table>

continued
The first one is the consistency of evidence. Based on this review it was found that the results showed some promise but the evidence is not conclusive. More studies especially double-blind randomized controlled trials would need to be undertaken to derive such consistent evidence. The second criterion is that of the strength of association. This review did not conduct a meta-analysis because the outcome variables were multifarious and methodologies were different including animal models and human studies. As a result, conclusion on the strength of the association criterion could not be established through this review. When more human studies become available future reviews would have to undertake such inquiry. The third criterion is that of specificity. A specific element, green
tea polyphenols (GTP) was found somewhat effective in the prevention of skin cancer in mice [18, 20, 26], as well in human cells [20, 31], in the laboratory and clinical studies. At the molecular level, polyphenols act in decreasing levels of cyclins and cyclin-dependent kinases of G1 phase of the cell cycle. Which further regulates the level of tumor suppressor proteins (Cip1/WAF1/p21, p16 and p53) that may inhibit skin cancer [31]. Other elements of green tea, Theaflavins (TF) and Therubigins (TR) [16], in human studies and Gallic Acid [23], and epigallocatechin-3-gallocate (EGCG) [13, 55–57], in mice laboratory studies were found to have inhibitory roles in skin cancer. Future researchers will have to work at establishing more specific evidence in this regard. The fourth criterion of causality is that of biological gradient or dose-response relationship which again could not be established through this review. The fifth criterion is that of temporality. Once again for that double-blind randomized controlled trials would need to be undertaken. The sixth criterion of biological plausibility seems somewhat satisfied due to encouraging results from both mice and human studies and also comparative evidence from other conditions. The seventh criterion of coherence or the idea not conflicting with previous evidence also seems to have some support from this review. The eighth criterion of experimental evidence has some support based on some empirical data presented in this review but once again double-blind randomized controlled trials would need to be undertaken to build strong empirical evidence. The final criterion of analogy which implies that there should be known associations that are similar to the one being studied has some basis due to the role of green tea as an anti-inflammatory agent [58], on brain functioning [59], on skin photoaging [60].

Results of this review suggest that more than one element found in green tea may have a potential preventive, protective, and inhibitory role in skin cancer. Even topical application of these elements has shown some anti-cancer effects in mice [21]. However, it cannot be asserted that green tea consumption and its topical use yields similar results in humans as is more common in animal models of mice. A few studies have found no effect on skin cancer or could not reach any conclusive evidence further warranting more investigation in this area. Previous reviews have also shown mixed results of green tea use for preventing skin cancer in humans. Compared to mice, studies in humans are very limited with no double-blind randomized controlled trials. Findings of this scoping review suggest the need for more randomized controlled clinical studies in humans.

Limitations and strengths

This review has few limitations including that the search was conducted through only three databases. Other databases were not included. Articles published only in the English language were included while grey literature was not explored. There could be publication bias. Often studies with favorable results are published so this review may not be able to trace studies with a negative outcome. This review attempted to find similarities between in silico model in humans, in vitro studies in mice and in humans, in vivo studies in mice and in humans, in vitro and in vivo mixed studies in humans, case-control studies, cohort studies, and double-blind randomized trials. Comparison between mice models and human studies may be affected because of different methodologies followed in studies. Observational studies on animals were not found so outcome comparison between such studies with humans were not evaluated. Some strengths of this review can be considered as inclusion of peer-reviewed articles, mostly published in reputable science journals, studies with contextual rigorous methodologies, and studies conducted by dependable academic and research institutions.

In conclusion, this review points toward potential benefits of green tea consumption and topical application in lowering skin cancer in humans, but further double-blind randomized controlled trials in this area are suggested.
References

